COLLISIONS AND TRANSPORT

Temperatures are in eV; the corresponding value of Boltzmann's constant is $k = 1.60 \times 10^{-12} \, \mathrm{erg/eV}$; masses μ , μ' are in units of the proton mass; $e_{\alpha} = Z_{\alpha}e$ is the charge of species α . All other units are cgs except where noted.

Relaxation Rates

Rates are associated with four relaxation processes arising from the interaction of test particles (labeled α) streaming with velocity \mathbf{v}_{α} through a background of field particles (labeled β):

slowing down
$$\frac{d\mathbf{v}_{\alpha}}{dt} = -\nu_{s}^{\alpha \setminus \beta} \mathbf{v}_{\alpha}$$
transverse diffusion
$$\frac{d}{dt} (\mathbf{v}_{\alpha} - \bar{\mathbf{v}}_{\alpha})_{\perp}^{2} = \nu_{\perp}^{\alpha \setminus \beta} v_{\alpha}^{2}$$
parallel diffusion
$$\frac{d}{dt} (\mathbf{v}_{\alpha} - \bar{\mathbf{v}}_{\alpha})_{\parallel}^{2} = \nu_{\parallel}^{\alpha \setminus \beta} v_{\alpha}^{2}$$
energy loss
$$\frac{d}{dt} v_{\alpha}^{2} = -\nu_{\epsilon}^{\alpha \setminus \beta} v_{\alpha}^{2},$$

where the averages are performed over an ensemble of test particles and a Maxwellian field particle distribution. The exact formulas may be written¹⁹

$$\nu_s^{\alpha \setminus \beta} = (1 + m_\alpha / m_\beta) \psi(x^{\alpha \setminus \beta}) \nu_0^{\alpha \setminus \beta};
\nu_\perp^{\alpha \setminus \beta} = 2 \left[(1 - 1/2x^{\alpha \setminus \beta}) \psi(x^{\alpha \setminus \beta}) + \psi'(x^{\alpha \setminus \beta}) \right] \nu_0^{\alpha \setminus \beta};
\nu_\parallel^{\alpha \setminus \beta} = \left[\psi(x^{\alpha \setminus \beta}) / x^{\alpha \setminus \beta} \right] \nu_0^{\alpha \setminus \beta};
\nu_\epsilon^{\alpha \setminus \beta} = 2 \left[(m_\alpha / m_\beta) \psi(x^{\alpha \setminus \beta}) - \psi'(x^{\alpha \setminus \beta}) \right] \nu_0^{\alpha \setminus \beta},$$

where

$$\nu_0^{\alpha \setminus \beta} = 4\pi e_{\alpha}^2 e_{\beta}^2 \lambda_{\alpha\beta} n_{\beta} / m_{\alpha}^2 v_{\alpha}^3; \qquad x^{\alpha \setminus \beta} = m_{\beta} v_{\alpha}^2 / 2kT_{\beta};$$

$$\psi(x) = \frac{2}{\sqrt{\pi}} \int_0^x dt \, t^{1/2} e^{-t}; \quad \psi'(x) = \frac{d\psi}{dx},$$

and $\lambda_{\alpha\beta} = \ln \Lambda_{\alpha\beta}$ is the Coulomb logarithm (see below). Limiting forms of ν_s , ν_{\perp} and ν_{\parallel} are given in the following table. All the expressions shown

have units cm³ sec⁻¹. Test particle energy ϵ and field particle temperature T are both in eV; $\mu = m_i/m_p$ where m_p is the proton mass; Z is ion charge state; in electron–electron and ion–ion encounters, field particle quantities are distinguished by a prime. The two expressions given below for each rate hold for very slow $(x^{\alpha \setminus \beta} \ll 1)$ and very fast $(x^{\alpha \setminus \beta} \gg 1)$ test particles, respectively.

Electron-electron
$$\frac{\text{Slow}}{\nu_s^{\text{e} \setminus e'}/n_{e'} \lambda_{ee'}} \approx 5.8 \times 10^{-6} T^{-3/2} \qquad \rightarrow 7.7 \times 10^{-6} \epsilon^{-3/2}$$

$$\nu_{\perp}^{e \setminus e'}/n_{e'} \lambda_{ee'} \approx 5.8 \times 10^{-6} T^{-1/2} \epsilon^{-1} \qquad \rightarrow 7.7 \times 10^{-6} \epsilon^{-3/2}$$

$$\nu_{\parallel}^{e \setminus e'}/n_{e'} \lambda_{ee'} \approx 2.9 \times 10^{-6} T^{-1/2} \epsilon^{-1} \qquad \rightarrow 3.9 \times 10^{-6} T \epsilon^{-5/2}$$
 Electron-ion
$$\nu_s^{e \setminus i}/n_i Z^2 \lambda_{ei} \approx 0.23 \mu^{3/2} T^{-3/2} \qquad \rightarrow 3.9 \times 10^{-6} \epsilon^{-3/2}$$

$$\nu_{\parallel}^{e \setminus i}/n_i Z^2 \lambda_{ei} \approx 2.5 \times 10^{-4} \mu^{1/2} T^{-1/2} \epsilon^{-1} \rightarrow 7.7 \times 10^{-6} \epsilon^{-3/2}$$

$$\nu_{\parallel}^{e \setminus i}/n_i Z^2 \lambda_{ei} \approx 1.2 \times 10^{-4} \mu^{1/2} T^{-1/2} \epsilon^{-1} \rightarrow 2.1 \times 10^{-9} \mu^{-1} T \epsilon^{-5/2}$$
 Ion-electron
$$\nu_s^{i \setminus e}/n_e Z^2 \lambda_{ie} \approx 1.6 \times 10^{-9} \mu^{-1} T^{-3/2} \qquad \rightarrow 1.7 \times 10^{-4} \mu^{1/2} \epsilon^{-3/2}$$

$$\nu_{\parallel}^{i \setminus e}/n_e Z^2 \lambda_{ie} \approx 3.2 \times 10^{-9} \mu^{-1} T^{-1/2} \epsilon^{-1} \rightarrow 1.8 \times 10^{-7} \mu^{-1/2} \epsilon^{-3/2}$$

$$\nu_{\parallel}^{i \setminus e}/n_e Z^2 \lambda_{ie} \approx 1.6 \times 10^{-9} \mu^{-1} T^{-1/2} \epsilon^{-1} \rightarrow 1.7 \times 10^{-4} \mu^{1/2} T \epsilon^{-5/2}$$
 Ion-ion
$$\frac{\nu_s^{i \setminus i'}}{n_{i'} Z^2 Z'^2 \lambda_{ii'}} \approx 6.8 \times 10^{-8} \frac{\mu'^{1/2}}{\mu} \left(1 + \frac{\mu'}{\mu}\right)^{-1/2} T^{-3/2}$$

$$\rightarrow 9.0 \times 10^{-8} \left(\frac{1}{2} + \frac{1}{2}\right) \frac{\mu}{\mu}$$

$$\frac{\nu_s^{\prime\prime}}{n_{i'}Z^2Z'^2\lambda_{ii'}} \approx 6.8 \times 10^{-8} \frac{\mu^{-1/2}}{\mu} \left(1 + \frac{\mu}{\mu}\right)^{-7/2} T^{-3/2}$$

$$\longrightarrow 9.0 \times 10^{-8} \left(\frac{1}{\mu} + \frac{1}{\mu'}\right) \frac{\mu^{1/2}}{\epsilon^{3/2}}$$

$$\frac{\nu_{\perp}^{i \setminus i'}}{n_{i'}Z^2Z'^2\lambda_{ii'}} \approx 1.4 \times 10^{-7} \mu'^{1/2} \mu^{-1} T^{-1/2} \epsilon^{-1}$$

$$\longrightarrow 1.8 \times 10^{-7} \mu^{-1/2} \epsilon^{-3/2}$$

$$\frac{\nu_{\parallel}^{i \setminus i'}}{n_{i'}Z^2Z'^2\lambda_{ii'}} \approx 6.8 \times 10^{-8} \mu'^{1/2} \mu^{-1} T^{-1/2} \epsilon^{-1}$$

$$\longrightarrow 9.0 \times 10^{-8} \mu^{1/2} \mu'^{-1} T \epsilon^{-5/2}$$

In the same limits, the energy transfer rate follows from the identity

$$\nu_{\epsilon} = 2\nu_s - \nu_{\perp} - \nu_{\parallel},$$

except for the case of fast electrons or fast ions scattered by ions, where the leading terms cancel. Then the appropriate forms are

$$\nu_{\epsilon}^{e \setminus i} \longrightarrow 4.2 \times 10^{-9} n_i Z^2 \lambda_{ei}$$

$$\left[\epsilon^{-3/2} \mu^{-1} - 8.9 \times 10^4 (\mu/T)^{1/2} \epsilon^{-1} \exp(-1836\mu \epsilon/T) \right] \sec^{-1}$$

and

$$\nu_{\epsilon}^{i \setminus i'} \longrightarrow 1.8 \times 10^{-7} n_{i'} Z^2 Z'^2 \lambda_{ii'}$$

$$\left[\epsilon^{-3/2} \mu^{1/2} / \mu' - 1.1 (\mu'/T)^{1/2} \epsilon^{-1} \exp(-\mu' \epsilon/T) \right] \sec^{-1}.$$

In general, the energy transfer rate $\nu_{\epsilon}^{\alpha \setminus \beta}$ is positive for $\epsilon > \epsilon_{\alpha}^*$ and negative for $\epsilon < \epsilon_{\alpha}^*$, where $x^* = (m_{\beta}/m_{\alpha})\epsilon_{\alpha}^*/T_{\beta}$ is the solution of $\psi'(x^*) = (m_{\alpha} \setminus m_{\beta})\psi(x^*)$. The ratio $\epsilon_{\alpha}^*/T_{\beta}$ is given for a number of specific α , β in the following table:

			$e \backslash p$	•	$e \backslash T$, $e \backslash He^3$	`
$\frac{\epsilon_{\alpha}^*}{T_{\beta}}$	1.5	0.98	4.8×10^{-3}	2.6×10^{-3}	1.8×10^{-3}	1.4×10^{-3}

When both species are near Maxwellian, with $T_i \lesssim T_e$, there are just two characteristic collision rates. For Z = 1,

$$\nu_e = 2.9 \times 10^{-6} n \lambda T_e^{-3/2} \text{ sec}^{-1};$$

 $\nu_i = 4.8 \times 10^{-8} n \lambda T_i^{-3/2} \mu^{-1/2} \text{ sec}^{-1}.$

Temperature Isotropization

Isotropization is described by

$$\frac{dT_{\perp}}{dt} = -\frac{1}{2} \frac{dT_{\parallel}}{dt} = -\nu_T^{\alpha} (T_{\perp} - T_{\parallel}),$$

where, if $A \equiv T_{\perp}/T_{\parallel} - 1 > 0$,

$$\nu_T^{\alpha} = \frac{2\sqrt{\pi}e_{\alpha}^2 e_{\beta}^2 n_{\alpha} \lambda_{\alpha\beta}}{m_{\alpha}^{1/2} (kT_{\parallel})^{3/2}} A^{-2} \left[-3 + (A+3) \frac{\tan^{-1}(A^{1/2})}{A^{1/2}} \right].$$

If A < 0, $\tan^{-1}(A^{1/2})/A^{1/2}$ is replaced by $\tanh^{-1}(-A)^{1/2}/(-A)^{1/2}$. For $T_{\perp} \approx T_{\parallel} \equiv T$,

$$\nu_T^e = 8.2 \times 10^{-7} n \lambda T^{-3/2} \sec^{-1};$$

$$\nu_T^i = 1.9 \times 10^{-8} n \lambda Z^2 \mu^{-1/2} T^{-3/2} \sec^{-1}.$$

Thermal Equilibration

If the components of a plasma have different temperatures, but no relative drift, equilibration is described by

$$\frac{dT_{\alpha}}{dt} = \sum_{\beta} \bar{\nu}_{\epsilon}^{\alpha \setminus \beta} (T_{\beta} - T_{\alpha}),$$

where

$$\bar{\nu}_{\epsilon}^{\alpha \setminus \beta} = 1.8 \times 10^{-19} \frac{(m_{\alpha} m_{\beta})^{1/2} Z_{\alpha}^{2} Z_{\beta}^{2} n_{\beta} \lambda_{\alpha\beta}}{(m_{\alpha} T_{\beta} + m_{\beta} T_{\alpha})^{3/2}} \sec^{-1}.$$

For electrons and ions with $T_e \approx T_i \equiv T$, this implies

$$\bar{\nu}_{\epsilon}^{e \setminus i} / n_i = \bar{\nu}_{\epsilon}^{i \setminus e} / n_e = 3.2 \times 10^{-9} Z^2 \lambda / \mu T^{3/2} \text{cm}^3 \text{sec}^{-1}.$$

Coulomb Logarithm

For test particles of mass m_{α} and charge $e_{\alpha} = Z_{\alpha}e$ scattering off field particles of mass m_{β} and charge $e_{\beta} = Z_{\beta}e$, the Coulomb logarithm is defined as $\lambda = \ln \Lambda \equiv \ln(r_{\text{max}}/r_{\text{min}})$. Here r_{min} is the larger of $e_{\alpha}e_{\beta}/m_{\alpha\beta}\bar{u}^2$ and $\hbar/2m_{\alpha\beta}\bar{u}$, averaged over both particle velocity distributions, where $m_{\alpha\beta} = m_{\alpha}m_{\beta}/(m_{\alpha}+m_{\beta})$ and $\mathbf{u} = \mathbf{v}_{\alpha} - \mathbf{v}_{\beta}$; $r_{\text{max}} = (4\pi \sum n_{\gamma}e_{\gamma}^{2}/kT_{\gamma})^{-1/2}$, where the summation extends over all species γ for which $\bar{u}^{2} < v_{T\gamma}^{2} = kT_{\gamma}/m_{\gamma}$. If this inequality cannot be satisfied, or if either $\bar{u}\omega_{c\alpha}^{-1} < r_{\text{max}}$ or $\bar{u}\omega_{c\beta}^{-1} < r_{\text{max}}$, the theory breaks down. Typically $\lambda \approx 10$ –20. Corrections to the transport coefficients are $O(\lambda^{-1})$; hence the theory is good only to $\sim 10\%$ and fails when $\lambda \sim 1$.

The following cases are of particular interest:

(a) Thermal electron–electron collisions

$$\lambda_{ee} = 23 - \ln(n_e^{1/2} T_e^{-3/2}), \qquad T_e \lesssim 10 \,\text{eV};$$

= $24 - \ln(n_e^{1/2} T_e^{-1}), \qquad T_e \gtrsim 10 \,\text{eV}.$

(b) Electron-ion collisions

$$\lambda_{ei} = \lambda_{ie} = 23 - \ln\left(n_e^{1/2} Z T_e^{-3/2}\right), \qquad T_i m_e / m_i < T_e < 10 Z^2 \text{ eV};$$

$$= 24 - \ln\left(n_e^{1/2} T_e^{-1}\right), \qquad T_i m_e / m_i < 10 Z^2 \text{ eV} < T_e$$

$$= 30 - \ln\left(n_i^{1/2} T_i^{-3/2} Z^2 \mu^{-1}\right), \qquad T_e < T_i Z m_e / m_i.$$

(c) Mixed ion-ion collisions

$$\lambda_{ii'} = \lambda_{i'i} = 23 - \ln \left[\frac{ZZ'(\mu + \mu')}{\mu T_{i'} + \mu' T_i} \left(\frac{n_i Z^2}{T_i} + \frac{n_{i'} Z'^2}{T_{i'}} \right)^{1/2} \right].$$

(d) Counterstreaming ions (relative velocity $v_D=\beta_D c$) in the presence of warm electrons, $kT_i/m_i, kT_{i'}/m_{i'} < v_D^2 < kT_e/m_e$

$$\lambda_{ii'} = \lambda_{i'i} = 35 - \ln \left[\frac{ZZ'(\mu + \mu')}{\mu \mu' \beta_D^2} \left(\frac{n_e}{T_e} \right)^{1/2} \right].$$

Fokker-Planck Equation

$$\frac{Df^{\alpha}}{Dt} \equiv \frac{\partial f^{\alpha}}{\partial t} + \mathbf{v} \cdot \nabla f^{\alpha} + \mathbf{F} \cdot \nabla_{\mathbf{v}} f^{\alpha} = \left(\frac{\partial f^{\alpha}}{\partial t}\right)_{\text{coll}},$$

where **F** is an external force field. The general form of the collision integral is $(\partial f^{\alpha}/\partial t)_{\text{coll}} = -\sum_{\beta} \nabla_{\mathbf{v}} \cdot \mathbf{J}^{\alpha \setminus \beta}$, with

$$\mathbf{J}^{\alpha \setminus \beta} = 2\pi \lambda_{\alpha\beta} \frac{e_{\alpha}^{2} e_{\beta}^{2}}{m_{\alpha}} \int d^{3}v' (u^{2} \mathbf{I} - \mathbf{u}\mathbf{u}) u^{-3}$$

$$\cdot \left\{ \frac{1}{m_{\beta}} f^{\alpha}(\mathbf{v}) \nabla_{\mathbf{v}'} f^{\beta}(\mathbf{v}') - \frac{1}{m_{\alpha}} f^{\beta}(\mathbf{v}') \nabla_{\mathbf{v}} f^{\alpha}(\mathbf{v}) \right\}$$

(Landau form) where $\mathbf{u} = \mathbf{v}' - \mathbf{v}$ and \mathbf{I} is the unit dyad, or alternatively,

$$\mathbf{J}^{\alpha \setminus \beta} = 4\pi \lambda_{\alpha\beta} \frac{e_{\alpha}^{2} e_{\beta}^{2}}{m_{\alpha}^{2}} \left\{ f^{\alpha}(\mathbf{v}) \nabla_{\mathbf{v}} H(\mathbf{v}) - \frac{1}{2} \nabla_{\mathbf{v}} \cdot \left[f^{\alpha}(\mathbf{v}) \nabla_{\mathbf{v}} \nabla_{\mathbf{v}} G(\mathbf{v}) \right] \right\},$$

where the Rosenbluth potentials are

$$G(\mathbf{v}) = \int f^{\beta}(\mathbf{v}') u d^3 v'$$

$$H(\mathbf{v}) = \left(1 + \frac{m_{\alpha}}{m_{\beta}}\right) \int f^{\beta}(\mathbf{v}') u^{-1} d^{3}v'.$$

If species α is a weak beam (number and energy density small compared with background) streaming through a Maxwellian plasma, then

$$\mathbf{J}^{\alpha \setminus \beta} = -\frac{m_{\alpha}}{m_{\alpha} + m_{\beta}} \nu_{s}^{\alpha \setminus \beta} \mathbf{v} f^{\alpha} - \frac{1}{2} \nu_{\parallel}^{\alpha \setminus \beta} \mathbf{v} \mathbf{v} \cdot \nabla_{\mathbf{v}} f^{\alpha} - \frac{1}{4} \nu_{\perp}^{\alpha \setminus \beta} \left(v^{2} \mathbf{I} - \mathbf{v} \mathbf{v} \right) \cdot \nabla_{\mathbf{v}} f^{\alpha}.$$

B-G-K Collision Operator

For distribution functions with no large gradients in velocity space, the Fokker-Planck collision terms can be approximated according to

$$\frac{Df_e}{Dt} = \nu_{ee}(F_e - f_e) + \nu_{ei}(\bar{F}_e - f_e);$$

$$\frac{Df_i}{Dt} = \nu_{ie}(\bar{F}_i - f_i) + \nu_{ii}(F_i - f_i).$$

The respective slowing-down rates $\nu_s^{\alpha \setminus \beta}$ given in the Relaxation Rate section above can be used for $\nu_{\alpha\beta}$, assuming slow ions and fast electrons, with ϵ replaced by T_{α} . (For ν_{ee} and ν_{ii} , one can equally well use ν_{\perp} , and the result is insensitive to whether the slow- or fast-test-particle limit is employed.) The Maxwellians F_{α} and \bar{F}_{α} are given by

$$F_{\alpha} = n_{\alpha} \left(\frac{m_{\alpha}}{2\pi k T_{\alpha}} \right)^{3/2} \exp \left\{ - \left[\frac{m_{\alpha} (\mathbf{v} - \mathbf{v}_{\alpha})^{2}}{2k T_{\alpha}} \right] \right\};$$

$$\bar{F}_{\alpha} = n_{\alpha} \left(\frac{m_{\alpha}}{2\pi k \bar{T}_{\alpha}} \right)^{3/2} \exp \left\{ -\left[\frac{m_{\alpha} (\mathbf{v} - \bar{\mathbf{v}}_{\alpha})^2}{2k \bar{T}_{\alpha}} \right] \right\},$$

where n_{α} , \mathbf{v}_{α} and T_{α} are the number density, mean drift velocity, and effective temperature obtained by taking moments of f_{α} . Some latitude in the definition of \bar{T}_{α} and $\bar{\mathbf{v}}_{\alpha}$ is possible;²⁰ one choice is $\bar{T}_{e} = T_{i}$, $\bar{T}_{i} = T_{e}$, $\bar{\mathbf{v}}_{e} = \mathbf{v}_{i}$, $\bar{\mathbf{v}}_{i} = \mathbf{v}_{e}$.

Transport Coefficients

Transport equations for a multispecies plasma:

$$\frac{d^{\alpha}n_{\alpha}}{dt} + n_{\alpha}\nabla \cdot \mathbf{v}_{\alpha} = 0;$$

$$m_{\alpha}n_{\alpha}\frac{d^{\alpha}\mathbf{v}_{\alpha}}{dt} = -\nabla p_{\alpha} - \nabla \cdot \boldsymbol{P}_{\alpha} + Z_{\alpha}en_{\alpha}\left[\mathbf{E} + \frac{1}{c}\mathbf{v}_{\alpha} \times \mathbf{B}\right] + \mathbf{R}_{\alpha};$$

$$\frac{3}{2}n_{\alpha}\frac{d^{\alpha}kT_{\alpha}}{dt} + p_{\alpha}\nabla\cdot\mathbf{v}_{\alpha} = -\nabla\cdot\mathbf{q}_{\alpha} - P_{\alpha}:\nabla\mathbf{v}_{\alpha} + Q_{\alpha}.$$

Here $d^{\alpha}/dt \equiv \partial/\partial t + \mathbf{v}_{\alpha} \cdot \nabla$; $p_{\alpha} = n_{\alpha}kT_{\alpha}$, where k is Boltzmann's constant; $\mathbf{R}_{\alpha} = \sum_{\beta} \mathbf{R}_{\alpha\beta}$ and $Q_{\alpha} = \sum_{\beta} Q_{\alpha\beta}$, where $\mathbf{R}_{\alpha\beta}$ and $Q_{\alpha\beta}$ are respectively the momentum and energy gained by the α th species through collisions with the β th; P_{α} is the stress tensor; and \mathbf{q}_{α} is the heat flow.

The transport coefficients in a simple two-component plasma (electrons and singly charged ions) are tabulated below. Here \parallel and \perp refer to the direction of the magnetic field $\mathbf{B} = \mathbf{b}B$; $\mathbf{u} = \mathbf{v}_e - \mathbf{v}_i$ is the relative streaming velocity; $n_e = n_i \equiv n$; $\mathbf{j} = -ne\mathbf{u}$ is the current; $\omega_{ce} = 1.76 \times 10^7 B \,\mathrm{sec}^{-1}$ and $\omega_{ci} = (m_e/m_i)\omega_{ce}$ are the electron and ion gyrofrequencies, respectively; and the basic collisional times are taken to be

$$\tau_e = \frac{3\sqrt{m_e}(kT_e)^{3/2}}{4\sqrt{2\pi}\,n\lambda e^4} = 3.44 \times 10^5 \frac{T_e^{3/2}}{n\lambda} \sec,$$

where λ is the Coulomb logarithm, and

$$\tau_i = \frac{3\sqrt{m_i}(kT_i)^{3/2}}{4\sqrt{\pi}n \lambda e^4} = 2.09 \times 10^7 \frac{T_i^{3/2}}{n\lambda} \mu^{1/2} \text{ sec.}$$

In the limit of large fields $(\omega_{c\alpha}\tau_{\alpha}\gg 1,\ \alpha=i,e)$ the transport processes may be summarized as follows:²¹

 $\mathbf{R}_{ei} = -\mathbf{R}_{ie} \equiv \mathbf{R} = \mathbf{R}_{u} + \mathbf{R}_{T}$; momentum transfer $\mathbf{R_u} = ne(\mathbf{j}_{\parallel}/\sigma_{\parallel} + \mathbf{j}_{\perp}/\sigma_{\perp});$ frictional force $\sigma_{\parallel} = 1.96\sigma_{\perp}; \ \sigma_{\perp} = ne^2\tau_e/m_e;$ electrical conductivities $\mathbf{R}_T = -0.71 n \nabla_{\parallel}(kT_e) - \frac{3n}{2\omega_{\perp} \tau_{\perp}} \mathbf{b} \times \nabla_{\perp}(kT_e);$ thermal force $Q_i = \frac{3m_e}{m_i} \frac{nk}{\tau_e} (T_e - T_i);$ ion heating $Q_e = -Q_i - \mathbf{R} \cdot \mathbf{u};$ electron heating $\mathbf{q}_{i} = -\kappa_{\parallel}^{i} \nabla_{\parallel}(kT_{i}) - \kappa_{\perp}^{i} \nabla_{\perp}(kT_{i}) + \kappa_{\wedge}^{i} \mathbf{b} \times \nabla_{\perp}(kT_{i});$ ion heat flux $\kappa_{\parallel}^{i} = 3.9 \frac{nkT_{i}\tau_{i}}{m_{i}}; \quad \kappa_{\perp}^{i} = \frac{2nkT_{i}}{m_{i}\omega^{2}\tau_{i}}; \quad \kappa_{\wedge}^{i} = \frac{5nkT_{i}}{2m_{i}\omega_{\alpha i}};$ ion thermal conductivities $\mathbf{q}_e = \mathbf{q}_n^e + \mathbf{q}_T^e$; electron heat flux $\mathbf{q}_{\mathbf{u}}^{e} = 0.71nkT_{e}\mathbf{u}_{\parallel} + \frac{3nkT_{e}}{2\omega_{e}\tau_{e}}\mathbf{b} \times \mathbf{u}_{\perp};$ frictional heat flux

thermal gradient heat flux
$$\mathbf{q}_{T}^{e} = -\kappa_{\parallel}^{e} \nabla_{\parallel}(kT_{e}) - \kappa_{\perp}^{e} \nabla_{\perp}(kT_{e}) - \kappa_{\wedge}^{e} \mathbf{b} \times \nabla_{\perp}(kT_{e});$$
 electron thermal conductivities
$$\kappa_{\parallel}^{e} = 3.2 \frac{nkT_{e}\tau_{e}}{m_{e}}; \quad \kappa_{\perp}^{e} = 4.7 \frac{nkT_{e}}{m_{e}\omega_{ce}^{2}\tau_{e}}; \quad \kappa_{\wedge}^{e} = \frac{5nkT_{e}}{2m_{e}\omega_{ce}};$$
 stress tensor (either species)
$$P_{xx} = -\frac{\eta_{0}}{2}(W_{xx} + W_{yy}) - \frac{\eta_{1}}{2}(W_{xx} - W_{yy}) - \eta_{3}W_{xy};$$

$$P_{yy} = -\frac{\eta_{0}}{2}(W_{xx} + W_{yy}) + \frac{\eta_{1}}{2}(W_{xx} - W_{yy}) + \eta_{3}W_{xy};$$

$$P_{xy} = P_{yx} = -\eta_{1}W_{xy} + \frac{\eta_{3}}{2}(W_{xx} - W_{yy});$$

$$P_{xz} = P_{zx} = -\eta_{2}W_{xz} - \eta_{4}W_{yz};$$

$$P_{yz} = P_{zy} = -\eta_{2}W_{yz} + \eta_{4}W_{xz};$$

$$P_{zz} = -\eta_{0}W_{zz}$$

(here the z axis is defined parallel to \mathbf{B});

ion viscosity
$$\eta_{0}^{i} = 0.96nkT_{i}\tau_{i}; \quad \eta_{1}^{i} = \frac{3nkT_{i}}{10\omega_{c_{i}}^{2}\tau_{i}}; \quad \eta_{2}^{i} = \frac{6nkT_{i}}{5\omega_{c_{i}}^{2}\tau_{i}};$$

$$\eta_{3}^{i} = \frac{nkT_{i}}{2\omega_{c_{i}}}; \quad \eta_{4}^{i} = \frac{nkT_{i}}{\omega_{c_{i}}};$$
electron viscosity
$$\eta_{0}^{e} = 0.73nkT_{e}\tau_{e}; \quad \eta_{1}^{e} = 0.51\frac{nkT_{e}}{\omega_{c_{e}}^{2}\tau_{e}}; \quad \eta_{2}^{e} = 2.0\frac{nkT_{e}}{\omega_{c_{e}}^{2}\tau_{e}};$$

$$\eta_{3}^{e} = -\frac{nkT_{e}}{2\omega_{c_{e}}}; \quad \eta_{4}^{e} = -\frac{nkT_{e}}{\omega_{c_{e}}}.$$

For both species the rate-of-strain tensor is defined as

$$W_{jk} = \frac{\partial v_j}{\partial x_k} + \frac{\partial v_k}{\partial x_j} - \frac{2}{3} \delta_{jk} \nabla \cdot \mathbf{v}.$$

When $\mathbf{B} = 0$ the following simplifications occur:

$$\mathbf{R_u} = ne\mathbf{j}/\sigma_{\parallel}; \quad \mathbf{R}_T = -0.71n\nabla(kT_e); \quad \mathbf{q}_i = -\kappa_{\parallel}^i \nabla(kT_i);$$
$$\mathbf{q}_u^e = 0.71nkT_e\mathbf{u}; \quad \mathbf{q}_T^e = -\kappa_{\parallel}^e \nabla(kT_e); \quad P_{jk} = -\eta_0 W_{jk}.$$

For $\omega_{ce}\tau_e \gg 1 \gg \omega_{ci}\tau_i$, the electrons obey the high-field expressions and the ions obey the zero-field expressions.

Collisional transport theory is applicable when (1) macroscopic time rates of change satisfy $d/dt \ll 1/\tau$, where τ is the longest collisional time scale, and (in the absence of a magnetic field) (2) macroscopic length scales L satisfy $L\gg l$, where $l=\bar{v}\tau$ is the mean free path. In a strong field, $\omega_{ce}\tau\gg 1$, condition (2) is replaced by $L_{\parallel}\gg l$ and $L_{\perp}\gg \sqrt{lr_e}$ ($L_{\perp}\gg r_e$ in a uniform field),

where L_{\parallel} is a macroscopic scale parallel to the field **B** and L_{\perp} is the smaller of $B/|\nabla_{\perp}B|$ and the transverse plasma dimension. In addition, the standard transport coefficients are valid only when (3) the Coulomb logarithm satisfies $\lambda \gg 1$; (4) the electron gyroradius satisfies $r_e \gg \lambda_D$, or $8\pi n_e m_e c^2 \gg B^2$; (5) relative drifts $\mathbf{u} = \mathbf{v}_{\alpha} - \mathbf{v}_{\beta}$ between two species are small compared with the thermal velocities, i.e., $u^2 \ll kT_{\alpha}/m_{\alpha}$, kT_{β}/m_{β} ; and (6) anomalous transport processes owing to microinstabilities are negligible.

Weakly Ionized Plasmas

Collision frequency for scattering of charged particles of species α by neutrals is

$$\nu_{\alpha} = n_0 \sigma_s^{\alpha \setminus 0} (kT_{\alpha}/m_{\alpha})^{1/2},$$

where n_0 is the neutral density and $\sigma_s^{\alpha \setminus 0}$ is the cross section, typically $\sim 5 \times 10^{-15} \text{ cm}^2$ and weakly dependent on temperature.

When the system is small compared with a Debye length, $L \ll \lambda_D$, the charged particle diffusion coefficients are

$$D_{\alpha} = kT_{\alpha}/m_{\alpha}\nu_{\alpha}$$

In the opposite limit, both species diffuse at the ambipolar rate

$$D_A = \frac{\mu_i D_e - \mu_e D_i}{\mu_i - \mu_e} = \frac{(T_i + T_e) D_i D_e}{T_i D_e + T_e D_i},$$

where $\mu_{\alpha} = e_{\alpha}/m_{\alpha}\nu_{\alpha}$ is the mobility. The conductivity σ_{α} satisfies $\sigma_{\alpha} = n_{\alpha}e_{\alpha}\mu_{\alpha}$.

In the presence of a magnetic field **B** the scalars μ and σ become tensors,

$$\mathbf{J}^{\alpha} = \boldsymbol{\sigma}^{\alpha} \cdot \mathbf{E} = \sigma_{\parallel}^{\alpha} \mathbf{E}_{\parallel} + \sigma_{\perp}^{\alpha} \mathbf{E}_{\perp} + \sigma_{\wedge}^{\alpha} \mathbf{E} \times \mathbf{b},$$

where $\mathbf{b} = \mathbf{B}/B$ and

$$\begin{split} \sigma_{\parallel}^{\alpha} &= n_{\alpha} e_{\alpha}^{2} / m_{\alpha} \nu_{\alpha}; \\ \sigma_{\perp}^{\alpha} &= \sigma_{\parallel}^{\alpha} \nu_{\alpha}^{2} / (\nu_{\alpha}^{2} + \omega_{c\alpha}^{2}); \\ \sigma_{\wedge}^{\alpha} &= \sigma_{\parallel}^{\alpha} \nu_{\alpha} \omega_{c\alpha} / (\nu_{\alpha}^{2} + \omega_{c\alpha}^{2}). \end{split}$$

Here σ_{\perp} and σ_{\wedge} are the Pedersen and Hall conductivities, respectively.